五月吧论坛【 藕心文苑 】[ 水青小榭 ] → 突然发现游戏已经结束了,小小地总结一下。

  共有1339人关注过本帖树形打印复制链接

主题:突然发现游戏已经结束了,小小地总结一下。

帅哥哟,离线,有人找我吗?
临津
  1楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
突然发现游戏已经结束了,小小地总结一下。  发帖心情 Post By:2023/12/1 12:29:11 [显示全部帖子]

今天才看到,原来游戏已经结束了。简单地总结一下。

1、游戏规则不难理解,但我原本以为,所谓的贴杀,是在前面选手的架构基础上,进行一定程度的续写,转折,最终所有下场的人,或许会合力完成一部五月版的修真小说。但后面,每个下场的玩家都各有世界观和架构,这点在第一轮,我始料未及。

2、参与这个活动,原本也只是想贴着字数下限赚点章子,随便写一两个情节。但第一轮,看到冷冽写得那么认真,第二轮也不自觉地推翻了原先的摸鱼想法,还算是挺认真地构思了一个完整的故事。把所有玩家名字都用了一遍,4000字的长度,也打破了我在五月的记录。

3、关于我写的故事,第一轮和第二轮的故事情节并没有什么关联,若是一开始便有构思一个大故事的想法,或许有两轮的时间和精力,会更加完善和精美一点,但工作较忙(还要抽出时间玩游戏),时间紧迫,这一点有些遗憾。

4、冠冠写的精神图景,个人觉得有点陷入到哲学的思维陷阱里了。缸中之脑这类的事情,无法被证伪,只是一种有趣的假想,就好比假如有一天π被算尽,证明了圆是其实是有微小的锯齿的,但在π被算尽之前,不会有人去否认圆是光滑的曲面。
关于精神与物质,有太多的哲学家思考过这个问题,一元论、二元论的争论从古至今,到现在都没有停息,其实将这些哲学观点,融入到修真小说里,也能产生非常有趣的情节。我记得卧牛真人写的《修真四万年》中就有所尝试,里面的一系列设定,都令人眼前一亮。

5、冷冽写的耽美很长,情节非常丰富。从作品看,冷冽非常有网感,是个天生适合写甜宠女频、种田耽美类小说的作者。参加活动的这两轮作品,设定还是非常好的,就是故事发展太快太碎了,没有核心的大情节支撑。或许也是时间的关系,否则在这个设定下,重新梳理拓展,必然也是一篇耽美爆文。

6、明黑写的文,完美符合了我心中对这次“古典修真”的想象,关于题材,在两轮游戏的中间,冠冠也发文讨论过。到底什么是“古典修真”,其实这个古典修真,也是很多小说网站为了给作品分类,精准区分读者而自己发明的,也并没有什么严格的定义。
那么赛博修真算不算古典修真?我觉得是算的,古典修真的“古典“二字,是对修真小说这一路的发展而来,所形成的某种认知体系的概括性总结。修真小说往上追溯,是古仙武侠、新派武侠,修真的真元概念,与武侠中的内力一脉相承。再往上,就是传统武侠,还珠楼主、平江不肖生。再往上追溯便是清代的《三侠五义》《儿女英雄传》了。
这一整套发展体系,让修真小说有了自己的隐形设定(门派、功法等)。在修炼层面比较灵活,但更多是对道家、佛家、神话传说等等的衍生和化用。在文化层面,表现出来的对传统武侠内核精神的传承(善恶有报、路见不平、侠义精神等)。
那么往后发展呢?或许便是赛博佛主,科技成仙了。


回到顶部
帅哥哟,离线,有人找我吗?
临津
  2楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 14:55:20 [显示全部帖子]

以下是引用荀灌在2023-12-1 12:46:47的发言:
陷阱这两个字我不爱听图片点击可在新窗口打开查看谁告诉你缸中之脑无法被证伪了,特征值了解一下。如果我们能建立数学模型,证明不同世界的特征值不一样。那么我们算同调数就能知道我们到底生活在什么样的世界上。你认为这是陷阱是你并没有真正了解哲学。这边建议先入手一套《柏拉图全集》

好的好的,现在就入手一套图片点击可在新窗口打开查看



回到顶部
帅哥哟,离线,有人找我吗?
临津
  3楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 14:56:16 [显示全部帖子]

以下是引用荀灌在2023-12-1 12:50:08的发言:
π是超越数,数学上有级数解。事实上数学家早就完成了对π的探索。它算不算尽,都跟圆的光滑性无关

斯里尼瓦瑟·拉马努金(英语: Srinivasa Ramanujan,又译拉马努詹、罗摩奴詹、拉曼努真,1887年12月22日—1920年4月26日),英国皇家学会院士,是印度史上最著名的数学家之一。沉迷数论,尤爱牵涉π、质数等数学常数的求和公式,以及整数拆分。惯以直觉(或称为数感)导出公式,不喜欢做证明,而他的理论在事后往往被证明是对的。他所留下的尚未被证明的公式,启发了几位菲尔兹奖获得者的工作。1997年,《拉马努金期刊》(Ramanujan Journal)创刊,用以发表有关“受到拉马努金影响的数学领域”的研究论文。

他自学成才并负笈剑桥的传奇故事曾数次被拍成电影,如2015年的《知无涯者》。

1882年,德国数学家林德曼证明了圆周率也是一个超越数(完全否定了“化圆为方”作图的可能性)。



回到顶部
帅哥哟,离线,有人找我吗?
临津
  4楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 14:57:22 [显示全部帖子]

以下是引用荀灌在2023-12-1 12:56:15的发言:
我用庄生那个例子是想说空间与对偶空间。

在数学里,任何向量空间V都有其对应的对偶向量空间(或简称为对偶空间),由V的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及标量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。
对偶空间是 row vector 与 column vector 的关系的抽象化。这个结构能够在无限维度空间进行并为测度,分布及希尔伯特空间提供重要的观点。对偶空间的应用是泛函分析理论的特征。傅立叶变换亦内蕴对偶空间的概念。

庄子傅里叶变化一下就成了鲲,鲲再傅里叶变换回来就变成了庄子。数学上很多空间对偶空间的对偶空间就是自己。这种自反性可以给庄鲲互换提供理论基础,但是没有实证,所以我就当传闻写了一笔。


这个对偶空间,是我们所理解的空间的概念吗?还是只是一个数学上的概念。



回到顶部
帅哥哟,离线,有人找我吗?
临津
  5楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 14:58:11 [显示全部帖子]

以下是引用对白在2023-12-1 13:56:34的发言:
下次玩我赞助点章子

可能没有下次了,这次事实上只有四个人完成了游戏。



回到顶部
帅哥哟,离线,有人找我吗?
临津
  6楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 15:22:27 [显示全部帖子]

以下是引用冠冠在2023-12-1 15:11:11的发言:

图片点击可在新窗口打开查看图片点击可在新窗口打开查看你猜数学上的空间上怎么抽象出来的。初期数学都是为了解决物理问题研究的,每个空间都可以被分类。包括你生存的这个

那我们生存的这个空间,在数学上是怎么分类的?





回到顶部
帅哥哟,离线,有人找我吗?
临津
  7楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 15:28:26 [显示全部帖子]

以下是引用冠冠在2023-12-1 15:13:53的发言:

你知道超越数跟无理数的区别吗。另外,1811年伽罗瓦才出生。1832年伽罗瓦死的时候才有群论。群论出来以后,才有关于多项式代数的全面通解


超越数是不能作为有理系数多项式方程的根的数。无理数是无限不循环的小数。


两个都无限不循环。应该有重叠的部分。也有不重叠的部分。部分相容,部分独立



回到顶部
帅哥哟,离线,有人找我吗?
临津
  8楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 15:29:47 [显示全部帖子]

以下是引用在2023-12-1 15:28:31的发言:


3维欧式几何

想起来了,还有非欧几何



回到顶部
帅哥哟,离线,有人找我吗?
临津
  9楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 15:32:28 [显示全部帖子]

记得在《奥术王座》里,就有欧式几何、非欧几何、黎曼几何这些内容的描写……图片点击可在新窗口打开查看

我高数还给老师了,但是小说又给我补了回去


回到顶部
帅哥哟,离线,有人找我吗?
临津
  10楼 一褂高级  164帖  2020/6/2 13:10:25 注册|搜索|短信|好友|勋章|藏票|洗衣||我的勋章


1片金叶子
:熬夜协会常任理事 点击进入抢亲页面浮光 点击进入小小金库两岸春柳临古津 今日帖数:今日0 帖 点击参与风云风云0-0 届 歌灯 遇到喜欢的人啦 是谁的心啊 奔向幸福吧 生而可爱 自由浪漫 平安喜乐 皮一下很开心 诸事皆顺 未来可期 倾城之鹿 一鹿相随 深林有鹿 鹿鸣呦呦 鹿王本生 古德猫宁 一笔繁华 泡泡猫 对白 称五两酥盐
  发帖心情 Post By:2023/12/1 15:33:25 [显示全部帖子]

以下是引用在2023-12-1 15:29:31的发言:


凭啥有重叠部分?你算过吗?


π不就是既是超越数,也是无理数吗?



回到顶部
总数 15 1 2 下一页